Improved Sufficient Conditions for the Existence of Anti-Directed Hamiltonian Cycles in Digraphs

نویسندگان

  • Arthur H. Busch
  • Michael S. Jacobson
  • Timothy Morris
  • Michael Plantholt
  • Shailesh K. Tipnis
چکیده

Let D be a directed graph of order n. An anti-directed (hamiltonian) cycleH inD is a (hamiltonian) cycle in the graph underlyingD such that no pair of consecutive arcs in H form a directed path in D. In this paper we give sufficient conditions for the existence of anti-directed hamiltonian cycles. Specifically, we prove that a directed graph D of even order n with minimum indegree and outdegree greater than 1 2n + 7 √ n/3 contains an anti-directed hamiltonian cycle. In addition, we show that D contains anti-directed cycles of all possible (even) lengths when n is sufficiently large and has minimum inand out-degree at least (1/2 + ǫ)n for any ǫ > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Decomposition of Circulants into Antidirected Hamilton Cycles

Let G = Gn(a1, a2, ..., ak) denote a directed circulant graph of order n with k pairwise distinct jumps [1]. Antidirected Hamilton cycle in G is a cycle of n arcs that does not contain induced directed path P2. Let C 1 G, C 2 G, ..., C k G be pairwise arc-disjoint antidirected Hamilton cycles in G, each composed of exactly two distinct jumps. We give the necessary and sufficient conditions for ...

متن کامل

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

THE RELATION BETWEEN TOPOLOGICAL ORDERING AND ADJACENCY MATRIX IN DIGRAPHS

In this paper the properties of node-node adjacency matrix in acyclic digraphs are considered. It is shown that topological ordering and node-node adjacency matrix are closely related. In fact, first the one to one correspondence between upper triangularity of node-node adjacency matrix and existence of directed cycles in digraphs is proved and then with this correspondence other properties of ...

متن کامل

Sufficient Conditions for a Digraph to be Supereulerian

A (di)graph is supereulerian if it contains a spanning, connected, eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we give a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013